Preparation and Crystal Structure of Na₃SbO(PO₄)₂

D. GUYOMARD,* C. PAGNOUX,* J. J. ZAH LETHO,† A. VERBAERE,* and Y. PIFFARD*,‡

*Laboratoire de Chimie des Solides, UMR 110, CNRS, Université de Nantes, 2, Rue de la Houssinière, 44072 Nantes Cedex 03, France; and †Laboratoire de Chimie Minérale, Faculté des Sciences et Techniques, 22 BP 582, Abidjan 22, Republique de cote d'ivoire

Received July 13, 1990; in revised form October 4, 1990

The single phase compound Na₃SbO(PO₄)₂ was prepared by a solid state reaction. It crystallizes in the orthorhombic system, space group $P2_12_12_1$ with a = 6.964(1) Å, b = 9.284(2) Å, c = 12.425(2) Å, Z = 4. The structure was determined from 968 reflections collected on a Nonius CAD4 automatic diffractometer with MoK α radiation. The final R index and weighted R_w index are 0.031 and 0.039, respectively. The structure is built up from strings of corner-sharing SbO₆ octahedra to which phosphate groups are linked by two of their vertices. These chains, running parallel to the a-axis, are separated from each other by sodium atoms. (1) 1991 Academic Press. Inc.

Introduction

Within a research program devoted to compounds likely to exhibit fast alkali-ion mobility, several phases which have been identified in the $K_2O-Sb_2O_5-P_2O_5$ system (1-3) can be ion-exchanged in acidic medium, thus leading to phosphato-antimonic acids which are ionexchangers, protonic conductors, and catalysts (4-6). Extending our investigations to other alkali ions, we prepared the Na₃SbO(PO₄)₂ compound. We report here on the refinement and description of its crystal structure.

Experimental

Single crystals of $Na_3SbO(PO_4)_2$ were grown from mixtures of $NaNO_3$, Sb_2O_3 , and $NH_4H_2PO_4$ (all GR grade, Merck). The chemicals were weighed out in the stoichiometric ratio and the mixture was heated in a platinum crucible at 473 K for 4 hr to decompose the NH₄H₂PO₄ before calcining at 1073 K for 12 hr in air. The crystals obtained are colorless thin needles elongated in the [100] direction. Their chemical analysis, conducted with an electron microprobe, leads to an atomic Na: Sb: P ratio of 3:1:2. Single crystal X-ray study indicates that the compound is of orthorhombic symmetry. The cell parameters (Table I) were least-squares refined from powder diffraction data collected with an INEL curved multidetector, using a 0.2-mm capillary and $CuK\alpha_1$ radiation ($\lambda = 1.54059$ Å; silicon as standard). The powder pattern (Table II) includes observed and calculated interplanar distances of the reflection planes along with the intensities calculated from the LAZY-

[‡] To whom correspondence should be addressed

Crystal	lata
Formula weight (g)	396.7
a(Å)	6.964(1)
b(Å)	9.284(2)
c(Å)	12.425(2)
V(Å ³)	803.4(4)
Ζ	4
Space group	$P2_{1}2_{1}2_{1}$
$D_{\text{calc}} (\mathbf{g} \cdot \mathbf{cm}^{-3})$	3.28
$\mu(MoK\alpha)(cm^{-1})$	40.31
Intensity mea	surement
Crystal size (mm)	$0.18 \times 0.03 \times 0.03$
Radiation (Å)	$MoK\alpha, \lambda = 0.71069$
Scan mode	ω
Scan angle (°)	$\Delta \omega = 1.0 + 0.35 \tan \theta$
Recording angular angle (θ°)	1.5 - 30.0
Number of independent data	
observed with $\sigma(I)/I < 0.33$	
used in refinements	968
Structure solution	and refinement
Number of variables (isotropic	
temperature factors)	62
$R = \sum_{n \in \mathbb{N}} (F_0 - F_c) / \sum F_0 $	0.047
$R_w = [\sum w(F_0 - F_c)^2 / \sum w F_0^2]^{1/2}$	0.059
with $w = 1/(1 + [(F_{obs} - F_{av})/$	F_{\max}^{2}
Number of variables (aniso-	
tropic temperature factors)	92
R =	0.031
$R_w =$	0.039
Extinction parameter refined	
g =	$2.4(3) \times 10^{-7}$

TABLE I

PULVERIX program (7). Intensity data were collected with a Nonius CAD4 diffractometer operating under the conditions given in Table I. For the data reduction, structure solution, and refinement, the SDP-PLUS program chain (1982 version) of Enraf-Nonius, written by Frenz (8), was used. Because of the low value of the calculated linear absorption coefficient ($\mu =$ 40.31 cm⁻¹) and the crystal size, no absorption correction was applied.

Structure Determination

The positional parameters for the antimony atoms were determined from the three-dimensional Patterson map, with the remaining atoms being found from successive difference Fourier maps. Refinement was carried out by the full-matrix leastsquares method. In a preliminary stage of refinement the positional parameters and isotropic temperature factors were refined to R = 0.047 and $R_w = 0.059$. Then anisotropic temperature factors were assigned to all but oxygen atoms. The final stage of refinement with corrections for secondary extinction and anomalous dispersion converged to final R = 0.031 and $R_w = 0.039$. A refinement of the enantiomorph did not give a different R value. The final Fourier difference map is featureless with maxima and minima in the range $\pm 1.0 \,\mathrm{e} \cdot \mathrm{\AA}^{-3}$. Table III presents the final atomic coordinates and thermal parameters (structure factor tables will be sent upon request).

Description and Discussion of the Structure

In the structure of Na₃SbO(PO₄)₂, the SbO₆ octahedra and PO₄ tetrahedra are arranged in infinite chains running parallel to the *a*-axis.

In a chain, two consecutive octahedra, lying at $x \simeq 0$ and $\frac{1}{2}$, are linked together via corner sharing and by the edge of two tetrahedra of different types. This arrangement of polyhedra forms a somewhat staggered string of SbO₆ octahedra with a Sb-O-Sb angle of about 128° (Fig. 1). Therefore each SbO₆ octahedron is connected to two other octahedra via opposite vertices and to four PO_4 tetrahedra (2 P(1)O_4 and 2 P(2)O_4). Two tetrahedra of the same type are linked to opposite vertices of a given octahedron. They lie at $x = \frac{1}{4}$ and $x = -\frac{1}{4}$, so that each of them connects this octahedron to one of its two adjacent neighbors at two different levels (Fig. 1). Then each PO₄ tetrahedron shares two vertices, with two consecutive octahedra in the chain and has two unshared vertices, i.e., not linked to the antimony atom. Each SbO(PO₄) $^{3-}_{2}$ chain is surrounded by four identical chains at a distance of 7.8 Å (Fig. 2). This arrangement

BRIEF COMMUNICATIONS

h k l	$d_{\rm obs}({ m \AA})$	$d_{\text{caic}}(\text{\AA})$	<i>I/I</i> ₀	hkl	$d_{\rm obs}({\rm \AA})$	$d_{\text{calc}}(\text{\AA})$	<i>I/I</i> 0
011	7.440	7.437	100	040	2.320	2.321	6
002	6.210	6.212	31	204		2.318	2
111	5.076	5.083	3	231]	2.272	2.274	3
020]	4.630	4.642	10	115		2.269	3
102		4.636	7	042	2.174	2.174	6
021	4.344	4.348	4	224		2.074	3
112	4.141	4.147	3	006	2.072	2.071	8
013	3.777	3.782	15	233	2.020	2.020	3
022	3.716	3.719	7	215	1.977	1.976	11
122	3.279	3.280	4	240		1.931	3
211	3.154	3.154	50	044		1.859	3
004	3.108	3.106	10	242	1.845	1.844	4
202	3.038	3.037	14	051		1.836	2
031	3.005	3.003	21	206		1.780	2
014	2.947	2.946	7	017	1.742	1.743	6
212	2.888	2.887	5	400		1.741	3
123		2.825	2	411	1.695	1.695	11
130	2.831	2.828	7	053		1.694	3
220	2.788	2.786	14	235		1.693	4
2 2 1	2.718	2.718	3	226	1.662	1.662	3
024	2.582	2.582	7	244		1.640	4
213	2.562	2.562	15	251	1.625	1.624	6
222	2.543	2.542	10	422	1.576	1.577	2
033	2.481	2.479	3	217	1.558	1.559	4
015	2.400	2.400	5				

TABLE II

X-RAY POWDER DIFFRACTION DATA (REFLECTIONS WITH $I/I_0 < 2$ Have Been Omitted)

TABLE IIIa

FRACTIONAL ATOMIC COORDINATES AND THERMAL PARAMETERS

Atom	Position	x	у	z	<i>B</i> (Å ²)
Sb(1)	4a	0.02103(6)	0.2463(1)	0.00476(5)	0.682(5) ^a
P(1)	4a	0.2629 (4)	0.5298(3)	0.9218 (2)	0.85 (4) ^a
P(2)	4a	0.7705 (4)	0.3749(3)	0.2004 (2)	0.85 (3) ^a
Na(I)	4a	0.7554 (7)	0.5866(4)	0.9833 (3)	1.64 (8) ^a
Na(2)	4a	0.3258 (8)	0.2425(6)	0.2600 (4)	2.83 (9) ^a
Na(3)	4a	0.3761 (7)	0.3934(6)	0.6594 (4)	2.13 (9) ^a
O(1)	4a	0.712 (1)	0.4690(8)	0.6686 (6)	1.1 (1)
O(2)	4a	0.4079 (9)	0.5486(7)	0.4850 (6)	1.1 (1)
0(3)	4a	0.451 (1)	0.4553(8)	0.9691 (6)	1.2 (1)
O(4)	4a	0.726 (1)	0.6968(8)	0.4444 (5)	0.89 (9)
O(5)	4a	0.588 (1)	0.3046(8)	0.1439 (6)	1.2 (1)
O(6)	4a	0.755 (1)	0.3374(8)	0.3169 (6)	1.4 (1)
O(7)	4 a	0.255 (1)	0.4907(8)	0.3026 (6)	1.6 (1)
O(8)	4a	0.241 (1)	0.3181(9)	0.4605 (7)	1.9 (1)
O(9)	4a	0.548 (1)	0.7100(8)	0.6549 (6)	1.1 (1)

^a Anisotropically refined atoms are given in the form of the isotropic equivalent thermal parameter defined as:

$$\boldsymbol{B}_{\rm eq} = 4/3 \sum_{i} \sum_{j} \beta_{ij} \, \mathbf{a}_{\rm i} \cdot \mathbf{a}_{\rm j} \,.$$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Sb	4.6(1)	10.5(1)	10.9(2)	0.0(3)	0.4(2)	-0.3(3)
P(1)	6.6(9)	10.4(9)	15(1)	-0.4(9)	1.0(9)	2.0(9)
P(2)	9.4(9)	13.0(9)	9.7(9)	-0.6(9)	-0.2(9)	-0.6(9)
Na(1)	27(2)	18(2)	17(2)	-3(2)	0(2)	5(1)
Na(2)	55(3)	22(2)	30(2)	-14(3)	21(2)	-9(3)
Na(3)	25(2)	29(2)	26(2)	-8(2)	4(2)	0(2)

TABLE 111b Anisotropical Thermal Parameters for the Atoms of Na3SbO(PO_J)_2 (Å $^2 \times 10^3)$

Note. The form of the anisotropic thermal parameter is:

 $\exp\left[-2\pi^{2}\left(h^{2}a^{*2}U_{11}+k^{2}b^{*2}U_{22}+1^{2}c^{*2}U_{33}+2hka^{*}b^{*}U_{12}+2hla^{*}c^{*}U_{13}+2klb^{*}c^{*}U_{23}\right)\right].$

TABLE IV

Selected Interatomic Distances (Å) and Bond Angles (°) for the Coordination Polyhedra (Diagonal O–O Distances in the SbO6 Octahedron Have Been Omitted)

			Sb(1)O6 octahedro	on		
Sb(1)	$O(2^i)$	O(3 ⁱⁱ)	O(4 ⁱ)	O(4 ⁱⁱⁱ)	O(5 ^{iv})	O(9 ⁱ)
$O(2^i)$	1.983(7)		2.66 (1)	2.82 (1)	2.87 (1)	2.77(1)
O(3 ⁱⁱ)	177.6(3)	1.962(8)	2.90 (1)	2.67 (1)	2.75 (1)	2.75 (1)
O(4 ⁱ)	85.0 (3)	95.8 (3)	1.950(7)		2.80 (1)	2.896(9)
O(4 ⁱⁱⁱ)	92.4 (3)	86.9 (3)	175.8(2)	1.927(7)	2.64 (1)	2.70 (1)
O(5 ^{iv})	93.2 (3)	89.2 (3)	85.0 (3)	91.9 (3)	1.964(7)	
O(9 ⁱ)	88.9 (3)	88.8 (3)	95.3 (3)	87.9 (3)	177.9(3)	1.970(7)
			P(1)O₄ tetrahedro	on		
P(1)	O(2 ^v)		O(3 ^v)	O	(7 ^v)	O(8 ^v)
O(2 ^v)	1.601	(7)	2.50 (1)	2.56	5 (1)	2.45 (1)
O(3 ^v)	103.4	l(3)	1.591(8)	2.57	7 (1)	2.49 (1)
O(7 ^v)	111.4	I (4)	112.3(4)	1.49	99(8)	2.54 (1)
O(8 ^v)	104.9	9(4)	108.0(5)	116	.0(5)	1.492(9)
			P(2)O ₄ tetrahedro	on		
P (2)	O(1	^{vi})	O(5)	0	(6)	O(9 ^{vi})
O(1 ^{vi})	1.507	7(8)	2.54 (1)	2.58	3 (1)	2.52 (1)
O(5)	110.1	l(4)	1.591(8)	2.46	5 (1)	2.54 (1)
O(6)	118.9	9(4)	105.9(3)	1.49	93(8)	2.47 (1)
O(9 ^{vi})	108.6	5(4)	105.9(3)	106	.6(4)	1.591(7)
		Na	a–O distances < 2	2.5 Å		
		Na(1) - O(1)		2.371(8)		
		Na(1)–O(3)		2.454(9)		
Na(1)-O(6)		Na(1)-O(6)		2.186(8)		
		Na(1)O(8)		2.260(9)		
		Na(2)-O(1)		2.296(9)		
		Na(2)-O(5)		2.398(9)		
		Na(2)-O(7)		2.41 (1)		
		Na(3)-O(1)		2.445(9)		
		Na(3)-O(6)		2.321(9)		
		Na(3)-O(7)		2.27 (1)		

Note. The symmetry code is

 $i: \bar{x} + 1/2; \bar{y} + 1; z - 1/2$ $ii: \bar{x} - 1; y + 1/2; \bar{z} + 3/2$ $iii: \bar{x} + 3/2; \bar{y} - 1/2; \bar{z}$ $iv: \bar{x} - 1; y + 1/2; \bar{z} + 1/2$ $v: \bar{x} + 1/2; \bar{y} + 1; z + 1/2$ $vi: \bar{x} + 3/2; \bar{y} + 1; \bar{z} - 1/2$

Fig. 1. [011]* view of two neighboring chains $SbO(PO_4)^{3-}$.

of chains delimits three different crystallographic sites for the sodium ions.

Among the alkali phosphatoantimonates already mentioned, Na₃SbO(PO₄)₂ is the second example of structure with a 1D covalent moiety. In the first one, K_2 SbPO₆ (9), each PO₄ tetrahedron is linked to a string of edge sharing octahedra via two of its vertices and has two unshared oxygen atoms.

A list of bond distances and bond angles along with their standard deviations is

given for Na₃SbO(PO₄)₂ in Table IV. It can be seen from this table that all distances are reasonable and in good agreement with previous knowledge of phosphates and antimony(V) structural chemistry. The SbO₆ octahedron is slightly distorted with Sb–O distances ranging from 1.927(7) Å to 1.983(7) Å. The two unshared oxygen atoms of the phosphate groups form two P–O bonds significantly shorter (~1.50 Å) than the two others (~1.60 Å). This difference

Fig. 2. Na₃SbO(PO₄)₂: projection of the structure on the b-c plane.

between P-O distances of shared or unshared oxygen atoms has been already observed in $K_3Sb_3P_2O_{14}(1)$, $KSbP_2O_8(2)$, and $K_2SbPO_6(9)$.

References

- 1. Y. PIFFARD, A. LACHGAR, AND M. TOURNOUX, J. Solid State Chem. 58, 253 (1985).
- 2. Y. PIFFARD, S. OYETOLA, S. COURANT, AND A. LACHGAR, J. Solid State Chem. 60, 209 (1985).
- 3. Y. PIFFARD, A. LACHGAR, AND M. TOURNOUX, Mater. Res. Bull. 21, 1231 (1986).

- 4. M. TOURNOUX AND Y. PIFFARD, French Patent 85-01839.
- 5. Y. PIFFARD, A. VERBAERE, A. LACHGAR, S. DE-NIARD-COURANT, AND M. TOURNOUX, *Rev. Chim. Miner.* 23, 766 (1986).
- 6. Y. PIFFARD, A. VERBAERE, S. OYETOLA, A. LACH-GAR, S. DENIARD-COURANT, AND M. TOURNOUX, Eur. J. Solid State Inorg. Chem. 26, 113 (1989).
- 7. R. YVON, W. JEITSCHKO, AND E. PARTHE, J. Appl. Crystallogr. 10, 73 (1977).
- 8. B. FRENZ, "Enraf-Nonius Structure Determination Package," Delft Univ. Press, Delft, Holland, 1982.
- 9. A. LACHGAR, S. DENIARD-COURANT, AND Y. PIF-FARD, J. Solid State Chem. 63, 409 (1986).